
Standard SQL Functions Cheat Sheet
TEXT FUNCTIONS
CONCATENATION
Use the || operator to concatenate two strings:
SELECT 'Hi ' || 'there!';
-- result: Hi there!

Remember that you can concatenate only character strings
using ||. Use this trick for numbers:
SELECT '' || 4 || 2;
-- result: 42

Some databases implement non-standard solutions for
concatenating strings like CONCAT() or CONCAT_WS().
Check the documentation for your specific database.

LIKE OPERATOR – PATTERN MATCHING
Use the _ character to replace any single character. Use the %
character to replace any number of characters (including 0
characters).

Fetch all names that start with any letter followed by
'atherine':
SELECT name
FROM names
WHERE name LIKE '_atherine';

Fetch all names that end with 'a':
SELECT name
FROM names
WHERE name LIKE '%a';

USEFUL FUNCTIONS
Get the count of characters in a string:
SELECT LENGTH('LearnSQL.com');
-- result: 12

Convert all letters to lowercase:
SELECT LOWER('LEARNSQL.COM');
-- result: learnsql.com

Convert all letters to uppercase:
SELECT UPPER('LearnSQL.com');
-- result: LEARNSQL.COM

Convert all letters to lowercase and all first letters to
uppercase (not implemented in MySQL and SQL Server):
SELECT INITCAP('edgar frank ted cODD');
-- result: Edgar Frank Ted Codd

Get just a part of a string:
SELECT SUBSTRING('LearnSQL.com', 9);
-- result: .com
SELECT SUBSTRING('LearnSQL.com', 0, 6);
-- result: Learn

Replace part of a string:
SELECT REPLACE('LearnSQL.com', 'SQL',
'Python');
-- result: LearnPython.com

NUMERIC FUNCTIONS
BASIC OPERATIONS
Use +, -, *, / to do some basic math. To get the number of
seconds in a week:
SELECT 60 * 60 * 24 * 7; -- result: 604800

CASTING
From time to time, you need to change the type of a number.
The CAST() function is there to help you out. It lets you
change the type of value to almost anything (integer,
numeric, double precision, varchar, and many
more).
Get the number as an integer (without rounding):
SELECT CAST(1234.567 AS integer);
-- result: 1234
Change a column type to double precision
SELECT CAST(column AS double precision);

USEFUL FUNCTIONS
Get the remainder of a division:
SELECT MOD(13, 2);
-- result: 1

Round a number to its nearest integer:
SELECT ROUND(1234.56789);
-- result: 1235

Round a number to three decimal places:
SELECT ROUND(1234.56789, 3);
-- result: 1234.568
PostgreSQL requires the first argument to be of the type
numeric – cast the number when needed.

To round the number up:
SELECT CEIL(13.1); -- result: 14
SELECT CEIL(-13.9); -- result: -13
The CEIL(x) function returns the smallest integer not less
than x. In SQL Server, the function is called CEILING().

To round the number down:
SELECT FLOOR(13.8); -- result: 13
SELECT FLOOR(-13.2); -- result: -14
The FLOOR(x) function returns the greatest integer not
greater than x.

To round towards 0 irrespective of the sign of a number:
SELECT TRUNC(13.5); -- result: 13
SELECT TRUNC(-13.5); -- result: -13
TRUNC(x) works the same way as CAST(x AS
integer). In MySQL, the function is called TRUNCATE().

To get the absolute value of a number:
SELECT ABS(-12); -- result: 12

To get the square root of a number:
SELECT SQRT(9); -- result: 3

NULLs
To retrieve all rows with a missing value in the price
column:
WHERE price IS NULL

To retrieve all rows with the weight column populated:
WHERE weight IS NOT NULL

Why shouldn't you use price = NULL or weight !=
NULL? Because databases don't know if those expressions
are true or false – they are evaluated as NULLs.
Moreover, if you use a function or concatenation on a column
that is NULL in some rows, then it will get propagated. Take a
look:

domain LENGTH(domain)

LearnSQL.com 12

LearnPython.com 15

NULL NULL

vertabelo.com 13

USEFUL FUNCTIONS
COALESCE(x, y, ...)
To replace NULL in a query with something meaningful:
SELECT
 domain,
 COALESCE(domain, 'domain missing')
FROM contacts;

domain coalesce

LearnSQL.com LearnSQL.com

NULL domain missing

The COALESCE() function takes any number of arguments
and returns the value of the first argument that isn't NULL.

NULLIF(x, y)
To save yourself from division by 0 errors:
SELECT
 last_month,
 this_month,
 this_month * 100.0
 / NULLIF(last_month, 0)
 AS better_by_percent
FROM video_views;

last_month this_month better_by_percent

723786 1085679 150.0

0 178123 NULL

The NULLIF(x, y) function will return NULL if x is the
same as y, else it will return the x value.

CASE WHEN
The basic version of CASE WHEN checks if the values are
equal (e.g., if fee is equal to 50, then 'normal' is
returned). If there isn't a matching value in the CASE WHEN,
then the ELSE value will be returned (e.g., if fee is equal to
49, then 'not available' will show up.
SELECT
 CASE fee
 WHEN 50 THEN 'normal'
 WHEN 10 THEN 'reduced'
 WHEN 0 THEN 'free'
 ELSE 'not available'
 END AS tariff
FROM ticket_types;
The most popular type is the searched CASE WHEN – it lets
you pass conditions (as you'd write them in the WHERE
clause), evaluates them in order, then returns the value for
the first condition met.
SELECT
 CASE
 WHEN score >= 90 THEN 'A'
 WHEN score > 60 THEN 'B'
 ELSE 'F'
 END AS grade
FROM test_results;
Here, all students who scored at least 90 will get an A, those
with the score above 60 (and below 90) will get a B, and the
rest will receive an F.

TROUBLESHOOTING
Integer division
When you don't see the decimal places you expect, it means
that you are dividing between two integers. Cast one to
decimal:
CAST(123 AS decimal) / 2
Division by 0
To avoid this error, make sure that the denominator is not
equal to 0. You can use the NULLIF() function to replace 0
with a NULL, which will result in a NULL for the whole
expression:
count / NULLIF(count_all, 0)
Inexact calculations
If you do calculations using real (floating point) numbers,
you'll end up with some inaccuracies. This is because this
type is meant for scientific calculations such as calculating
the velocity. Whenever you need accuracy (such as dealing
with monetary values), use the decimal / numeric type (or
money if available).
Errors when rounding with a specified precision
Most databases won't complain, but do check the
documentation if they do. For example, if you want to specify
the rounding precision in PostgreSQL, the value must be of
the numeric type.

Try out the interactive Standard SQL Functions course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

https://learnsql.com/course/standard-sql-functions
https://learnsql.com/
https://learnsql.com/
https://vertabelo.com/

Standard SQL Functions Cheat Sheet
AGGREGATION AND GROUPING

COUNT(expr) − the count of values for the rows within
the group
SUM(expr) − the sum of values within the group
AVG(expr) − the average value for the rows within the
group
MIN(expr) − the minimum value within the group
MAX(expr) − the maximum value within the group

To get the number of rows in the table:
SELECT COUNT(*)
FROM city;

To get the number of non-NULL values in a column:
SELECT COUNT(rating)
FROM city;

To get the count of unique values in a column:
SELECT COUNT(DISTINCT country_id)
FROM city;

GROUP BY
CITY

name country_id

Paris 1

Marseille 1

Lyon 1

Berlin 2

Hamburg 2

Munich 2

Warsaw 4

Cracow 4

CITY

country_id count

1 3

2 3

4 2

The example above – the count of cities in each country:
SELECT name, COUNT(country_id)
FROM city
GROUP BY name;

The average rating for the city:
SELECT city_id, AVG(rating)
FROM ratings
GROUP BY city_id;

Common mistake: COUNT(*) and LEFT JOIN
When you join the tables like this: client LEFT JOIN
project, and you want to get the number of projects for
every client you know, COUNT(*) will return 1 for each client
even if you've never worked for them. This is because, they're
still present in the list but with the NULL in the fields related
to the project a�er the JOIN. To get the correct count (0 for
the clients you've never worked for), count the values in a
column of the other table, e.g., COUNT(project_name).
Check out this exercise to see an example.

DATE AND TIME
There are 3 main time-related types: date, time, and
timestamp. Time is expressed using a 24-hour clock, and it
can be as vague as just hour and minutes (e.g., 15:30 – 3:30
p.m.) or as precise as microseconds and time zone (as shown
below):

2021-12-31 14:39:53.662522-05
date time

timestamp
YYYY-mm-dd HH:MM:SS.ssssss±TZ

14:39:53.662522-05 is almost 2:40 p.m. CDT (e.g., in
Chicago; in UTC it'd be 7:40 p.m.). The letters in the above
example represent:

In the date part:
YYYY – the 4-digit
year.
mm – the zero-
padded month (01
—January through
12—December).
dd – the zero-
padded day.

In the time part:
HH – the zero-padded hour in a
24-hour clock.
MM – the minutes.
SS – the seconds. Omissible.
ssssss – the smaller parts of a
second – they can be expressed
using 1 to 6 digits. Omissible.
±TZ – the timezone. It must
start with either + or -, and use
two digits relative to UTC.
Omissible.

What time is it?
To answer that question in SQL, you can use:

CURRENT_TIME – to find what time it is.
CURRENT_DATE – to get today's date. (GETDATE() in
SQL Server.)
CURRENT_TIMESTAMP – to get the timestamp with the
two above.

Creating values
To create a date, time, or timestamp, simply write the
value as a string and cast it to the proper type.
SELECT CAST('2021-12-31' AS date);
SELECT CAST('15:31' AS time);
SELECT CAST('2021-12-31 23:59:29+02' AS
timestamp);
SELECT CAST('15:31.124769' AS time);
Be careful with the last example – it will be interpreted as 15
minutes 31 seconds and 124769 microseconds! It is always a
good idea to write 00 explicitly for hours:
'00:15:31.124769'.

You might skip casting in simple conditions – the database
will know what you mean.
SELECT airline, flight_number,
departure_time
FROM airport_schedule
WHERE departure_time < '12:00';

INTERVALs
Note: In SQL Server, intervals aren't implemented – use the
DATEADD() and DATEDIFF() functions.

To get the simplest interval, subtract one time value from
another:
SELECT CAST('2021-12-31 23:59:59' AS
timestamp) - CAST('2021-06-01 12:00:00' AS
timestamp);
-- result: 213 days 11:59:59

To define an interval: INTERVAL '1' DAY
This syntax consists of three elements: the INTERVAL
keyword, a quoted value, and a time part keyword (in
singular form.) You can use the following time parts: YEAR,
MONTH, WEEK, DAY, HOUR, MINUTE, and SECOND. In MySQL,
omit the quotes. You can join many di�erent INTERVALs
using the + or - operator:
INTERVAL '1' YEAR + INTERVAL '3' MONTH

In some databases, there's an easier way to get the above
value. And it accepts plural forms! INTERVAL '1 year 3
months'
There are two more syntaxes in the Standard SQL:

Syntax What it does

INTERVAL 'x-y' YEAR
TO MONTH

INTERVAL 'x year y
month'

INTERVAL 'x-y' DAY
TO SECOND

INTERVAL 'x day y
second'

In MySQL, write year_month instead of YEAR TO MONTH
and day_second instead of DAY TO SECOND.

To get the last day of a month, add one month and subtract
one day:
SELECT CAST('2021-02-01' AS date)
 + INTERVAL '1' MONTH
 - INTERVAL '1' DAY;

To get all events for next three months from today:
SELECT event_date, event_name
FROM calendar
WHERE event_date BETWEEN CURRENT_DATE AND
CURRENT_DATE + INTERVAL '3' MONTH;

To get part of the date:
SELECT EXTRACT(YEAR FROM birthday)
FROM artists;
One of possible returned values: 1946. In SQL Server, use the
DATEPART(part, date) function.

TIME ZONES
In the SQL Standard, the date type can't have an associated
time zone, but the time and timestamp types can. In the
real world, time zones have little meaning without the date,
as the o�set can vary through the year because of daylight
saving time. So, it's best to work with the timestamp
values.

When working with the type timestamp with time
zone (abbr. timestamptz), you can type in the value in
your local time zone, and it'll get converted to the UTC time
zone as it is inserted into the table. Later when you select
from the table it gets converted back to your local time zone.
This is immune to time zone changes.

AT TIME ZONE
To operate between di�erent time zones, use the AT TIME
ZONE keyword.

If you use this format: {timestamp without time
zone} AT TIME ZONE {time zone}, then the
database will read the time stamp in the specified time zone
and convert it to the time zone local to the display. It returns
the time in the format timestamp with time zone.

If you use this format: {timestamp with time zone}
AT TIME ZONE {time zone}, then the database will
convert the time in one time zone to the target time zone
specified by AT TIME ZONE. It returns the time in the
format timestamp without time zone, in the target
time zone.

You can define the time zone with popular shortcuts like UTC,
MST, or GMT, or by continent/city such as:
America/New_York, Europe/London, and
Asia/Tokyo.

Examples
We set the local time zone to 'America/New_York'.

SELECT TIMESTAMP '2021-07-16 21:00:00' AT
TIME ZONE 'America/Los_Angeles';
-- result: 2021-07-17 00:00:00-04

Here, the database takes a timestamp without a time zone
and it's told it's in Los Angeles time, which is then converted
to the local time – New York for displaying. This answers the
question "At what time should I turn on the TV if the show
starts at 9 PM in Los Angeles?"

SELECT TIMESTAMP WITH TIME ZONE '2021-06-
20 19:30:00' AT TIME ZONE
'Australia/Sydney';
-- result: 2021-06-21 09:30:00

Here, the database gets a timestamp specified in the local
time zone and converts it to the time in Sydney (note that it
didn't return a time zone.) This answers the question "What
time is it in Sydney if it's 7:30 PM here?"

Try out the interactive Standard SQL Functions course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

https://learnsql.com/course/standard-sql-functions/aggregate-functions/function-count/count-left-join
https://learnsql.com/course/standard-sql-functions
https://learnsql.com/
https://learnsql.com/
https://vertabelo.com/

