
SQL Window Functions Cheat Sheet

month city sold
1 Rome 200
2 Paris 500
1 London 100
1 Paris 300
2 Rome 300
2 London 400
3 Rome 400

Abbreviation Meaning
UNBOUNDED PRECEDING BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

n PRECEDING BETWEEN n PRECEDING AND CURRENT ROW
CURRENT ROW BETWEEN CURRENT ROW AND CURRENT ROW
n FOLLOWING BETWEEN AND CURRENT ROW AND n FOLLOWING

UNBOUNDED FOLLOWING BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

sold city month
200 Rome 1
500 Paris 2
100 London 1
300 Paris 1
300 Rome 2
400 London 2
400 Rome 3

sold city month
300 Paris 1
500 Paris 2
200 Rome 1
300 Rome 2
400 Rome 3
100 London 1
400 London 2

WINDOW FUNCTIONS
compute their result based on a sliding window
frame, a set of rows that are somehow related to
the current row.

PARTITION BY
divides rows into multiple groups, called partitions, to
which the window function is applied.

WINDOW FRAME
is a set of rows that are somehow related to the current row. The window frame is evaluated separately within each partition.

ABBREVIATIONS DEFAULT WINDOW FRAME

ROWS | RANGE | GROUPS BETWEEN lower_bound AND upper_bound

ORDER BY
specifies the order of rows in each partition to which the
window function is applied.

LOGICAL ORDER OF OPERATIONS IN SQL

SYNTAX

Named Window Definition

AGGREGATE FUNCTIONS VS. WINDOW FUNCTIONS
unlike aggregate functions, window functions do not collapse rows.

PARTITION BY, ORDER BY, and window frame definition are all optional.

Default Partition: with no PARTITION BY clause, the entire
result set is the partition.

As of 2020, GROUPS is only supported in PostgreSQL 11 and up.

PARTITION BY city PARTITION BY city ORDER BY month

Default ORDER BY: with no ORDER BY clause, the order of
rows within each partition is arbitrary.

If ORDER BY is specified, then the frame is
RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW.

Without ORDER BY, the frame specification is
ROWS BETWEEN UNBOUNDED PRECEDING AND
UNBOUNDED FOLLOWING.

You can use window functions in SELECT and ORDER BY. However, you can’t put window functions anywhere in the FROM,
WHERE, GROUP BY, or HAVING clauses.

SELECT city, month,
 sum(sold) OVER (
 PARTITION BY city
 ORDER BY month
 RANGE UNBOUNDED PRECEDING) total
FROM sales;

SELECT country, city,
 rank() OVER country_sold_avg
FROM sales
WHERE month BETWEEN 1 AND 6
GROUP BY country, city
HAVING sum(sold) > 10000
WINDOW country_sold_avg AS (
 PARTITION BY country
 ORDER BY avg(sold) DESC)
ORDER BY country, city;

1. FROM, JOIN
2. WHERE
3. GROUP BY
4. aggregate functions
5. HAVING
6. window functions

7. SELECT
8. DISTINCT
9. UNION/INTERSECT/EXCEPT
10. ORDER BY
11. OFFSET
12. LIMIT/FETCH/TOP

SELECT <column_1>, <column_2>,
 <window_function>() OVER (
 PARTITION BY <...>
 ORDER BY <...>
 <window_frame>) <window_column_alias>
FROM <table_name>;

SELECT <column_1>, <column_2>,
 <window_function>() OVER <window_name>
FROM <table_name>
WHERE <...>
GROUP BY <...>
HAVING <...>
WINDOW <window_name> AS (
 PARTITION BY <...>
 ORDER BY <...>
 <window_frame>)
ORDER BY <...>;

current row
∑ ∑

∑

∑

Aggregate Functions Window Functions month city sold sum
1 Paris 300 800
2 Paris 500 800
1 Rome 200 900
2 Rome 300 900
3 Rome 400 900
1 London 100 500
2 London 400 500

city sold month
Paris 300 1
Rome 200 1
Paris 500 2
Rome 100 4
Paris 200 4
Paris 300 5
Rome 200 5

London 200 5
London 100 6

Rome 300 6

ROWS BETWEEN 1 PRECEDING
AND 1 FOLLOWING

1 row before the current row and
1 row after the current row

city sold month
Paris 300 1
Rome 200 1
Paris 500 2
Rome 100 4
Paris 200 4
Paris 300 5
Rome 200 5

London 200 5
London 100 6

Rome 300 6

RANGE BETWEEN 1 PRECEDING
AND 1 FOLLOWING

values in the range between 3 and 5
ORDER BY must contain a single expression

city sold month
Paris 300 1
Rome 200 1
Paris 500 2
Rome 100 4
Paris 200 4
Paris 300 5
Rome 200 5

London 200 5
London 100 6

Rome 300 6

GROUPS BETWEEN 1 PRECEDING
AND 1 FOLLOWING

1 group before the current row and 1 group
after the current row regardless of the value

PARTITION UNBOUNDED
PRECEDING

UNBOUNDED
FOLLOWING

N PRECEDING

M FOLLOWING

N ROWS

M ROWS

The bounds can be any of the five options:

 ∙ UNBOUNDED PRECEDING
 ∙ n PRECEDING
 ∙ CURRENT ROW
 ∙ n FOLLOWING
 ∙ UNBOUNDED FOLLOWING

The lower_bound must be BEFORE the upper_bound

current
row

current
row

current
row

CURRENT
ROW

city price
row_number rank dense_rank

over(order by price)
Paris 7 1 1 1
Rome 7 2 1 1

London 8.5 3 3 2
Berlin 8.5 4 3 2

Moscow 9 5 5 3
Madrid 10 6 6 4

Oslo 10 7 6 4

LIST OF WINDOW FUNCTIONS

AGGREGATE FUNCTIONS

RANKING FUNCTIONS
 ∙ row_number() − unique number for each row within partition, with different numbers

for tied values
 ∙ rank() − ranking within partition, with gaps and same ranking for tied values
 ∙ dense_rank() − ranking within partition, with no gaps and same ranking for tied values

ANALYTIC FUNCTIONS
 ∙ lead(expr, offset, default) − the value for the row offset rows after the current; offset and

default are optional; default values: offset = 1, default = NULL
 ∙ lag(expr, offset, default) − the value for the row offset rows before the current; offset and

default are optional; default values: offset = 1, default = NULL

 ∙ nth_value(expr, n) − the value for the n-th row within the window frame; n must be an integer ∙ ntile(n) − divide rows within a partition as equally as possible into n groups, and assign each
row its group number.

 ∙ first_value(expr) − the value for the first row within the window frame
 ∙ last_value(expr) − the value for the last row within the window frame

DISTRIBUTION FUNCTIONS
 ∙ percent_rank() − the percentile ranking number of a row—a value in [0, 1] interval:

(rank - 1) / (total number of rows - 1)
 ∙ cume_dist() − the cumulative distribution of a value within a group of values, i.e., the number of

rows with values less than or equal to the current row’s value divided by the total number of rows;
a value in (0, 1] interval

ORDER BY and Window Frame: rank() and dense_rank() require ORDER BY, but
row_number() does not require ORDER BY. Ranking functions do not accept window
frame definition (ROWS, RANGE, GROUPS).

ORDER BY and Window Frame: first_value(),
last_value(), and nth_value() do not
require an ORDER BY. They accept window frame
definition (ROWS, RANGE, GROUPS).

ORDER BY and Window Frame: ntile(),
lead(), and lag() require an ORDER BY.
They do not accept window frame definition
(ROWS, RANGE, GROUPS).

ORDER BY and Window Frame:
Aggregate functions do not require an
ORDER BY. They accept window frame
definition (ROWS, RANGE, GROUPS).

Note: You usually want to use RANGE BETWEEN
UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING with last_value(). With the default
window frame for ORDER BY, RANGE UNBOUNDED
PRECEDING, last_value() returns the value for
the current row.

ORDER BY and Window Frame: Distribution functions require ORDER BY. They do not accept window frame
definition (ROWS, RANGE, GROUPS).

Aggregate Functions
 ∙ avg()
 ∙ count()
 ∙ max()
 ∙ min()
 ∙ sum()

Ranking Functions
 ∙ row_number()
 ∙ rank()
 ∙ dense_rank()

Distribution Functions
 ∙ percent_rank()
 ∙ cume_dist()

Analytic Functions
 ∙ lead()
 ∙ lag()
 ∙ ntile()
 ∙ first_value()
 ∙ last_value()
 ∙ nth_value()

 ∙ avg(expr) − average value for
rows within the window frame

 ∙ count(expr) − count of values
for rows within the window
frame

 ∙ max(expr) − maximum value
within the window frame

 ∙ min(expr) − minimum value
within the window frame

 ∙ sum(expr) − sum of values within
the window frame

month sold
1 500
2 300
3 400
4 100
5 500

NULL
500
300
400
100

lag(sold) OVER(ORDER BY month)

or
de

r b
y

m
on

th

city month sold
Paris 1 500
Paris 2 300
Paris 3 400
Rome 2 200
Rome 3 300
Rome 4 500

first_value
500
500
500
200
200
200

first_value(sold) OVER
(PARTITION BY city ORDER BY month)

city month sold
Paris 1 500
Paris 2 300
Paris 3 400
Rome 2 200
Rome 3 300
Rome 4 500

last_value
400
400
400
500
500
500

last_value(sold) OVER
(PARTITION BY city ORDER BY month
RANGE BETWEEN UNBOUNDED PRECEDING

AND UNBOUNDED FOLLOWING)

month sold
1 500
2 300
3 400
4 100
5 500

300
400
100
500

NULL

lead(sold) OVER(ORDER BY month)

or
de

r b
y

m
on

th

city sold cume_dist
Paris 100 0.2

Berlin 150 0.4
Rome 200 0.8

Moscow 200 0.8
London 300 1

80% of values are
less than or equal
to this one

cume_dist() OVER(ORDER BY sold)

city sold percent_rank
Paris 100 0

Berlin 150 0.25
Rome 200 0.5

Moscow 200 0.5
London 300 1

without this row 50% of
values are less than this
row’s value

percent_rank() OVER(ORDER BY sold)

month sold
1 500
2 300
3 400
4 100
5 500

0
0

500
300
400

lag(sold, 2, 0) OVER(ORDER BY month)

or
de

r b
y

m
on

th

off
se

t=
2month sold

1 500
2 300
3 400
4 100
5 500

400
100
500

0
0

lead(sold, 2, 0) OVER(ORDER BY month)

or
de

r b
y

m
on

th

off
se

t=
2

111

222

333

city sold
Rome 100
Paris 100
London 200
Moscow 200
Berlin 200
Madrid 300
Oslo 300
Dublin 300

1
1
1
2
2
2
3
3

ntile(3)

1

2

3

Try out the interactive Window Functions course at LearnSQL.com,
and check out our other SQL courses.

LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

city month sold
Paris 1 500
Paris 2 300
Paris 3 400
Rome 2 200
Rome 3 300
Rome 4 500
Rome 5 300
London 1 100

nth_value
300
300
300
300
300
300
300

NULL

nth_value(sold, 2) OVER (PARTITION BY city
ORDER BY month RANGE BETWEEN UNBOUNDED

PRECEDING AND UNBOUNDED FOLLOWING)

https://learnsql.com/
https://learnsql.com/course/window-functions

